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Entanglement and Classical Correlations
in the Quantum Frame

E. G. Beltrametti®>® and S. Bugajskf*
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The frame of classical probability theory can be generalized by enlarging the usual
family of random variables in order to encompass nondeterministic ones. This leads to
a frame in which two kinds of correlations emerge: the classical correlation that is coded
in the mixed state of the physical system and a new correlation, to be called probabilis-
tic entanglement, which may occur also at pure states. We examine to what extent this
characterization of correlations can be applied to quantum mechanics. Explicit calcu-
lations on simple examples outline that a same quantum state can show only classical
correlations or only entanglement depending on its statistical content; situations may
also arise in which the two kinds of correlations compensate each other.
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1. INTRODUCTION

The standard framework of classical statistical mechanics makes use of a
convex set of states having the structure of a simplex, and adopts a family of
observables, or random variables, which have a deterministic nature. More specif-
ically, the states form the sdt;" () of the probability measures on a measurable
space? whose points—hence the Dirac measureSdo be denoted,,, w € —
represent the pure states. An observable taking values in a measurable&Espace
corresponds to an affine map

A M{(Q) — M{(8),

and the deterministic requirement is mirrored by the condition thdtas no
dispersion on pure states, namely Dirac measures are mapped into Dirac measures,
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so that the observabl& becomes represented by a measurable funétien E.
Any two observables have a unique joint observable and a correlation between
their outcomes can occur only at mixed states.

If the above framework is generalized by dropping out the deterministic re-
quirement, so allowing also observables that have dispersion on pure states, we
get a frame that has been discussed in Beltrametti and Bugajski (1995, 1996) and
Bugajski (1996, 2001): the set of states is still the simpik($2) but now the
observables need not map Dirac measure® oo Dirac measures on the pertain-
ing outcome space. Any two observables admit a joint observable but the latter is
nonunique when the two observables have an indeterministic nature: a correlation
between their outcomes is now relative to the considered joint observable and it
need not vanish at pure states. In Beltrametti and Bugajski (2002) it is shown that
we can separate two kinds of correlation: thassical correlationwhich occurs
only at a mixed state and is coded in the way the pure states are mixed up to get
the nonpure state in question, and pinebabilistic entanglememgenerated by the
joint observable considered, and occurring also in pure states. Both correlations
can be exhaustively characterized by corresponding density functions (correlation
functions). As the name suggests, the probabilistic entanglement is analogous to
the corresponding quantum concept.

In Section 2 we examine to what extent the notions of classical correlation
and of probabilistic entanglement can be transferred to the quantum context: we
will point at the fact the nonsimplex structure of the set of quantum states gives rise
to ambiguities in separating classical correlation and entanglement when mixed
states are considered. A quantum state can always be decomposed into a (possibly
trivial) convex combination of pure states, so that it admits a representation in
the setM;"(R24) of the probability measures on the measurable spa¢ef the
one-dimensional projectors of the Hilbert spagebut this representation is in
general nonunique. In fact, the observables adopted by quantum mechanics do not
separateM; (Q): they define a partition oM, (Q4) into equivalence classes
that correspond to the density operatorgfoRecalling that mixed quantum states
are associated with nontrivial density operatorsibfand that pure states are
associated with one-dimensional projectors, itis indeed well known that the convex
decomposition of a density operator into one-dimensional projectors is nonunique.
In Section 3 we will discuss a simple example that emphasizes the ambiguities said
above.

The problem of defining the notion of entanglement and of classical correla-
tion at mixed quantum states, and the related issue of characterizing the states that
can (or cannot) exhibit entanglement, have received attention in the literature under
different perspectives: as actual guides to the vast literature could serve Horodecki
et al.(2001) and Keyl (2002); we also mention Henderson and Vedral (2001) and
the rigorous approach of Majewski (2002) where some ideas similar to ours were
formulated.
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Let us recall that a quantum observable taking values in the measurable
spaceE can be represented by a POV-measkre 5() — L(H), whereB(E)
is o-Boolean algebra of subsets &fand £(H) is the family of the positive op-
erators ofH (see, e.g., Buscht al, 1995, 1996). If2 is the set of the reals then
B(E) is typically the Boolean algebra of the Borel subset§ i a finite set then
B(E) is typically the Boolean algebra of all subsetssf

Writing S(H) for the convex set of the density operatorgffan equivalent
representation of an observable taking valueg is given by an affine map of
S(H) into the setM;"(E) of all probability measures oB. For a given quantum
stateD € S(H) the measuréd(D) is the outcome measure that is the result of
a measurement of the observalleon the stateD. We write EA to denote the
POV-measure associatedAcand recall that the probability of getting a value of
the observable\ in the setX € B(E) at the staté is given by the basic quantum
rule

A(D)(X) = THEA(X)D). 1)

If the POV-measur&” reduces to a PV-measure on the real line, then the observ-
able A is known to correspond to a self-adjoint operatof-of

Notice thatwherE has the form of a Cartesian prod&it x E, anobservable
A: S(H) - M[(E1 x Ep) defines two observablesy : S(H) — M (Ei),i =
1,2, byAi(D) : [T, (A(D)) where[]; : M (E1 x Ez) — M (&) is the marginal
projection. The observabla is then said to be a quantum joint observabledgf
and A,. However, for a pair of observable : S(H) — M (Ei),i =1, 2, the
existence of a quantum joint observable is not ensured.

2. CORRELATIONS

In probability theory a correlation between two parameter Egtand E; is
understood as a particular property of a probability measoreZ; x E,, namely

v # v1 Ko,

wherev; = [[jv,i =1, 2, is the marginal measure @&, and X stands for the
product of measures. Thus, the notion of correlation just corresponds to the lack
of independence (to a “mutual relationship,” according to the Oxford Advanced
Learner’s Dictionary).

Consequently, we can say that a correlation betw@&ermand E, encoded
in v e M (E1 x E2) is what distinguishes from vy K v,. If we want to find a
formal characterization of such a correlation we have to find how to describe the
“difference” between andv; X v,. An exhaustive description of this “difference”
is provided by the density function (the Radon—Nikodym derivative, see e.g., Bauer,
1981; Billingsley, 1979) of w.r.t. v; Kv,. Consequently, everything one can say
about a correlation betweety andE; encoded i € M (E; x Ey) is contained
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in the density function
] dv
P A )’
which is a real-valued positive function & x E,. The existence of this density
function is ensured wheneveris a discrete measure (Beltrametti and Bugajski,

2002). If in particularg€; and E, and finite sets, the relationship betweeand
v1 X vo will take the form

v(X)= Y p-vRuén &) S1eBibhe
(51,62)eX
for every X C E; x Ep. In this caseo can be simply calculated by pointwise
dividing the two measuresandv; X vy:

v &)
p(5182) = o Evale &) )

The presence of a correlation is mirrored by the fact thiatnot the constant unit
function.

We will be interested in the case in which the two correlated Betsnd 2,
are value sets (sets of outcomes) of two observables, while the probability measure
v on E; x &5 is the result of the measurement of a joint observable of them.

In the standard context of the classical statistical mechanics, where the set of
states is the simplek; (Q2) and only deterministic observables come into play,
any two observableg; : M/ () — M (E1), A2 : M (Q) - M (E) always
admit the unique joint observabhg X A, defined by its action on the pure states

A1 K AS,) i= A1(dn) X Ax(S,) foreveryw € Q, 3)

and extended by affinity to the whalé;" (22). Thus, when we speak of a correlation
betweenA; and A; at a statew € M; () the reference to the joint observable
A; X A is compulsory, and we have just to compare the two meagyresA,(i)
and A;(u) X Ax(u). What we get is the classical correlation characterized by the
density function (the Radon—Nicodym derivative)
_ d(AL R Ax(w))
pc = : 4)
d(Aq(n) X Ax(w))

Inview of Eq. (3)p. = 1 at pure states: a nontrivial classical correlation can appear
only at mixed states.

If we go to the generalization of the standard classical frame by allowing also
indeterministic observables, then the unicity of the joint observable breaks down:
besidesA; X A, other joint observables become possible (see Beltrametti and
Bugajski, 1996, 2002; Bugajski, 1996). When we speak of a correlation between
A; and A; at a stater € M (2) we have now to specify which joint observable
J(A1, Ay) we refer to and we are naturally led to compare the two measures
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J(A1, A)() and Ai(u) X Ax(u), thus getting the correlation characterized by
the density function

_ d((A1, A)(w) (5)
Tod(AL(u) K A(u))

As discussed in Beltrametti and Bugajski (2002) this correlation can be, in gen-
eral, partitioned into two parts by first comparing the meagiiis;, Ao)() with

A; X Ay(n) and then comparing the measube X Ay(u) with Ag(n) X Ax(w).

The second step provides just the classical correlation said above, while the first
step provides a correlation to be caltstanglementClearly, the entanglement can
emerge only when the joint observable referred to differs flanx A,, namely

from the classical joint observable. The density function associated to the entan-
glement will then be

Pt

_ dQ(A, A2)(w) (6)
© d(AL R Ag(p))
and known properties of the Radon—Nicodym derivatives (see, e.g., Bauer, 1981
Corollary 2.9.4, or Billingsley, 1979, Sect. 32) give the product rule

Pt = Pc * Pe- (7)

This motivates folp, the name of total correlation (hence the notation).

Letus now come to the quantum frame, and consider two quantum observables
A S(H) — M (8i),i = 1, 2, admitting a joint observable: this is the case, for
instance, when one deals with real valued observables represented by commuting
self-adjoint operators (the joint observable is then unique). We can say that the
two observables are correlated at the quantum §tateS(7), relative to the given
quantum joint observabl@(As, Az) 1 S(H) — M (E1 x By) iff

J(A1, A2)(D) # Ai(D) X Az(D).

The total correlation between the quantum observahlesnd A; relative to
the joint observablé\ (at the statd) is then exhaustively described, as in Eq. (5),
by the total correlation function
d(J(Aq, A2)(D))
Pt = d . (8)
(A1(D) X Az(D))
But if we tackle the problem of separating the classical correlation and the entan-
glement then we are faced with the translation to the quantum frame of the product
A; X A,. We can mirror Eg. (3) by defining; X A, on the pure states according to

AL B Az(P) := Ay(P) R Ax(P) 9)

for every one-dimensional project® of H. But the extension by affinity to the
whole set of quantum stat&§) makes sense only if we refer to a specific convex
decomposition into pure states of the mixed stateand this decomposition is
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known to be nonunique. In other words, if the mixed state (density operator)
under discussion admits the convex decompoasition into pure states

D=) wiP, (10)

where thew;’s are positive numbers whose sum is 1 and f& are one-
dimensional projectors, then we can affinely defiaex A, onther.h.s. of Eq. (10)
getting the measure

D WiATR A(R) =D wiAu(R) B Ao(R), (11)

but this measure is not invariant under different choices of the convex
decomposition oD.

Inview of the above fact one can speak of classical correlation and of entangle-
ment in the quantum context only with reference to a given convex decomposition
of the (mixed) state under discussion. The corresponding density functions will
read (see Egs. (4) and (6))

A (X wiA(P) R A(R))
Pe = T 4(A(D) ® Ay(D))

(12)

and
e GOAMAID)
d (X wi Au(R) K Ax(R))
Letus stress that only the prodygt- pe thatequale, (see Eq. (7)) has the property

of being invariant under different convex decompositions of the quantumi3tate
while neitherp. nor pe have such an invariance.

(13)

3. ATWO-QUBIT EXAMPLE

We will illustrate the introduced concepts on a simple quantum-mechanical
example based on a Hilbert space of the fdte= C? ® C?: it can be viewed as
the composition of two spin-1/2 or as a two-qubit system.

Let {v,, ¥_} be an orthonormal basis of?Gnd letP,, P_ be the corre-
sponding (one-dimensional) projectors. A canonical orthonormal basig @f C
C?is provided by{(yr; ® ¥, ¥ ® ¥, ¥4 ® ¥_, ¥_ ® ¥, } and the associated
one-dimensional projectors read:

P++ == P+ ® P+, P__ = P_ ® P_, P_|__ == P+ ® P_, P_+ == P_ ® P+.

Consider the two observablel : S(C; ® C;) > M ({3, —3}).i =1, 2,
described by the self-adjoint operators och@C?:
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A1<%P+ — %P_> I, A=IQ® (%& — %P_>,
where| denotes the identity operator @°. We can viewA; as the observable
describing the-component of the spin of thi¢h subsystem. According to quan-
tum mechanics the only admissible joint observableAgf A, is the observ-
able J(A1, Ag) : S(C?® C?) — M; ({3, —3} x {3, —3}) which corresponds to
the PV measur& (A1) defined by

EJ (AL A9) 1‘} =P E (A1 A9) _} _} - P__
2'2 ' 2" 2 '

11 11
EJ(Al,Az) - _2) = P ., EJ(Al,Az) ——, = =P_..
> 75 + 2'2 *

We will be concerned with the correlation betwe&npand A relative to the
joint observableJ(A;, A;) at various quantum states: this will point at the fact
that, in the quantum frame, the splitting of the correlation into a classical part and
an entanglement might become a matter of convention.

Inthe sequel we will have to compute the various measures involved in the cor-
relations of interest: to do that we will refer to Eq. (1), noticing that the traceis linear
and that for a pure state, s& the r.h.s. of Eq. (1) takes the form,(EA(X)¢),
whereg is any unit vector in the one-dimensional subspace onto wiiplojects.

We will write 1 to denote the Dirac measure @1 —%} concentrated at the value

%(similarlyform%), andn 1 1, to denote the Dirac measuren —3} x {3, -3}
concentrated at the poing (3) (similarly for N1y ML, 2y Nt —1)-

2" 2
3.1. Separable Mixed State

A separable mixed statis represented by a density operator that decom-
poses into the convex combination of pure product states. A canonical example is
provided by the density operator

D= W1 P++ + W3 P__ + W3 PJF, + Wy P,Jr. (14)

In order to get the total correlation we have now to compare the two measures
J(A1, A2)(D) and A1(D) X Ax(D).

The measurd(A;, Ao)(D) on{2, —1} x {3, —3} is easily obtained looking
at the explicit expression d (A1) given above. We get

J(A1, A))(D) = Win 1y + Wan_1 1y +Wana _ 1y + Wan_1 1.

The measuré\;(D) on {%, —%} can be obtained by an analogous procedure:
noticing thatE* (1) = P, ® | andEA(—3) = P_ ® | we get,

A1(D) = (W1 +wsz)n1 + (W2 + Wa)n_1.
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Similarly we have
A2(D) = (W1 + Wa)n1 + (W2 + Wa)n_1.
Hence the product measui; (D) X A,(D) takes the form
A1(D) B Az(D) = (W1 + Wa)(W1 + Wa)ns 1y + (W2 + Wa) (W2 + Wa)n_1 _1y
+ (W1 + W) (W2 + Wa)ns 1) + (W2 + Wa)(W1 + Wa)n_1,

The density function of the total correlation betwegnand A; at the state
D will then turn out to be (see Egs. (2) and (8)):

(1 1)_ W1 ( 1 1)_ Wy
M22) 7 W rwawi+wa) "\72772) T (Wt wa)wa + wg)’

(1 1) _ W3 ( 1 1) B Wy
P 2" 2) (W]_ + W3)(W2 + Wg) R 2'2) (Wz + W4)(W1 + W4) ’

In order to examine how this total correlation splits into classical correlation
and entanglement we have now to evaluate the measure (see Egs. (9) and (11))

W1 AL KA (P ) + WAy B Ax(P--) + Wz Ag X Ax(Py-) + WaAr X Ax(P-4),

where A; X Ax(Py 1) = A1(Py,) X Ax(P,.) and so on. The calculation goes as
before: for instance we havéy(P;.) = Ax(P;y) = ni SO that Ay(Py 1) X
Ax(Py) = (3,1) and similarly for the other terms. The resultis that the measure
above equals exactly the measui&\;, Ay)(D) said before. This means that the
density functionp. of the classical correlation coincides with (see Eq. (12))
while the density functiom (see Eq. (13)) is the constant unit function. In other
words, the total correlation betweéxy and A; at the stateD appears to be en-
tirely a classical correlation, without any entanglement coming into play. In the
Appendix we will prove that the absence of entanglement holds true also for every
bipartite separable mixed state.

3.2. Bell Diagonal State

Instead of the canonical basfg, @ v, v_ Q@ V¥_, v, @ ¥_, ¥_ @ ¥}
used before, let us now turn to the Bell basis

1 1
Pr:i= =W QU +v-®Y), Poi=—=Wr @Yy —V-_QY),

72 7
Byim (s @V 4 Y B Ys), b= (Y ® Y — Y @ V)
3._\/5 + - - +/» 4._«/2 + - - +/

and letPy, Py, P3, P4 be the corresponding one-dimensional projectors.
A convex combination of the form

D’ =W;_P1+W/2P2+W/3P3+W:1P4 (15)
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is called aBell diagonal statdBennetet al, 1996). We are going to obtain the
correlation functions for the observablas, A, at such a state.

The outcome measury{ A;, Az)(D’) of the quantum joint observable &f
and A; is easily found to be

J(A1, A)(D) = %(W/l + Wp) (n(%,%) + n(,%,,%))

2'2

+ %(wg +wy) (ngson) gz

The two measured;(D’) and Ay(D’) have the uniform structur%n% + %n,% SO
that also their product is uniformly distributed over the four-point sﬁéoe%} X

1
l n _ =
Au(D) 8 Ao(D) = 7 (12, 2) +-23) -3 1))
Therefore, the density function of the total correlation betwagand A, at
the Bell stateD’ is

(11 , 1 1 , ,
Pt (E’ E) = POt <—§, —§> = 2(W1+W2)1

1 1 11
#(3-3) = (-3 3) =205+

In order to see how this total correlation could be separated into classical
correlation and entanglement we must go to the measure (see Eq. (11))

W1 A1 ) Ax(Py) + Wy Ay ) Ax(Py) + WAy ) Ax(Ps) + W, Ay K Ay(Py),

which is easily seen to coincide with the uniform product measw@®’) X
Ax(D’). Therefore, by inspection of Egs. (12) and (13), we concludedhat oy
while p is the constant unit function. In other words, the correlation betwgen
and A, at the Bell stateD’ appears to be entirely an entanglement without any
classical correlation coming into play.

The absence of any classical correlation that we have found seems to disagree
with the result of Henderson and Vedral (2001), where a numerical measure for
classical correlation is introduced, which does not vanish at some Bell diagonal
state. This might point at the fact that such a numerical measure does not fully
capture our notion of classical correlation.

A somewhat similar disagreement with previous literature occurs also when
we look at the entanglement density functipf(= p{) given above which is
nonconstant whenevev; + w; # w; + w,. Indeed, according to Bennet al.
(1996) and Keyl (2002) a Bell diagonal state shows entanglement only if one of
the weightsw;, w;, wj, wy (in our notations) is bigger tha%‘[ clearly, this would
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imply the inequalityw} + w} # wj; 4+ w} but the reverse implication does not
hold. Again, this might point at the fact that the numerical measure of entangle-
ment introduced in Bennett al. (1996) (the “entanglement of formation”) does
not cover exactly our definition of entanglement.

3.3. A Degenerate State

As far as the density operatoBsand D’ considered in Sections 3.1 and 3.2
have no degenerate eigenvalues, that is as far ag;thand thew;’s in Egs. (14)
and (15) are pairwise distinct, it is guaranteed thaand D’ represent distinct
quantum states. In this case the fact that the correlation betiieand A; at the
stateD is purely classical while at the stal® it is just entanglement makes no
problem. But a peculiar feature emerges when we consider degenerate eigenvalues,
for instance when we assume

Wi=Wy=w;=W,=a and Wg=ws=wz=w,=Db

witha+b = % In this caseD andD’ actually represent the same quantum state,
sayDy, since the only difference among their convex decompositions is a different
choice of an orthonormal basis within the degenerate eigenspaces.

As expected we have nogy = p{ explicitly:

11 (11 1 1 , 1 1
Pt <§, E) = 0 (51 E) = Ot <—§, —§> = Py <—§, _E> =4a,
1 1 (1 1 11 , 11
Lt (51 —§> = Pt (E' —§> = POt (_E’ é) = Pt <—§1 E) = 4b.

But, according to the results of Sections 3.1 and 3.2, we have now that this
correlation appears to be entirely a classical correlation if we refer to the convex
combination

aP,  +aP__+bP._+bP_, (16)
while itappearsto be entirely an entanglement if we refer to the convex combination
abP,+aP,+bP;+bPy (17)

despite the fact that these two convex combinations correspond to the same
guantum state.

This result emphasizes the fact that the separation of entanglement and clas-
sical correlation is possible only if we know tetatistical contenof the quantum
mixed state, i.e., the actual decomposition of the mixed state into a convex combi-
nation of pure states, but théatistical contenis in general not uniquely specified
by the von Neumann description of quantum mixed states.
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Let us further remark that also the convex combination
aP,.+aP._+bPs+ bk (18)

represents the same quantum siat@xpressed by Eq. (16) or by Eq. (17). Clearly,
the total corelation betweefy, and A, at this new convex combination is the same
as before, but now the density functions of the classical correlation and of the
entanglement turn out to be

11 1 1 1 1 11
Pe (E' E) =Pc (_E'_§> =2(2a+b), pc <§,—§> = Pc <—§, E) =2b,

and

11_ 1 l_ 2a 1 1_ 11_2
Pe 22 = Pe > 2_2a~|—b' Pe > 2—pe > 5] =<

Thus, if one refers to the convex decomposition of Eq. (18), the total correlation
appeatrs to be partially a classical correlation and partially an entanglement.

In the totally degenerate case= b(= %1), hence in the case of the “most
mixed” state, the density function of the total correlation is, as expected, the con-
stant unit function, no matter which convex decomposition one refers to. But, if
the convex decomposition of Eq. (18) is referred to, there is still some classical
correlation and some entanglement: indeed we find

11_ 1 1_3 1 l_ ll_l
Pc 22 = Pc > 3) =% Pc 273 = pPc 2'2) =%

while

11\ 1 1\ 2 101\ 11)_,
Pe\pp) =Pe\T2072) T3 Pelzr72) TP\ 2) T~

in agreement with the product rulg - pe = p;. A classical correlation and an
entanglement survive at the mixture of Eq. (18) evem 4 b, though in absence

of a total correlation. This example shows a new and unexpected effect: even if
a state shows no total correlation at all, one can find both classical and quantum
correlations that compensate each other.

APPENDIX

We refer to the two-qubit example of Section 3, and consider the observ-
ablesA;, A, there defined representing teecomponent of the spin of the two
subsystems. Agaid (A, Ay) denotes their joint observable afid (442 is the
corresponding PV measure. We are going to show that there is no entanglement be-
tweenA; and A, at any bipartite separable mixed state represented by the density
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operator

D= ZWiPi ® 9,

whereP; and Q; are one-dimensional projectors Gf, with i ranging over the
positive integers (actually what we are going to show easily generalizes to integrals
of product pure states with respect to arbitrary probability measures over pure states
of the two-qubit system).

In order to calculate the entanglement function we have to compare the two
measures) (Aq, A2)(D) and)", wi Ai(P ® Qi) K Ax(P; ® Qj).

Looking atthe explicit expression & (A1) givenin Section 3, and recalling
that v, ¥_ denote the orthonormal vectors 6f representing the spin-up and
spin-down states along tlzeaxis, we obtain fold (A, A2)(D) the explicit form

D Wi i) (e, Qvrdngs,

Nl
~—

+ D Wiy, P ) (Y-, QU0 -3

+ D Wil P ) (-, Qv-dngy, s

2'2

+ Zwi W, Py )Wy, Qi w+)n(,; 3

In fact, looking for instance at the first term of the above expression, we have
just to refer to Eq. (1) and recall that at the pdiibt 1} the PV measur (A A2)

takes the valué®, ., i.e., the projector onto the stafe. ® v, so that the value

of J(A1, A)(D) at that point becomes

ZWi Tr(Pyy - P ® Q) = ZWi(‘h ® Y P ® Qi @ Y4)

(with similar remarks applying for the other terms).
On the other hand we have

AP ® Qi) = (W, Piyrdns + (-, Piy)n_s
and

AP ® Qi) = (Y4, Qv + (Y-, Qivy-)n_1

as one sees by noticing, for instance, that at the r{(%ihthe PV measur&”
takes the valu®, ® | (see Section 3), so that at this point the value\gfP; ®
Qi) becomes (seeEq. (1)) R{(® | - P ® Qi) = Tr(P+P) = (Y4, Pivy); and
similarly for the other terms. Hence the mixtuye w; A(Pi @ Qi) K Ax(P @
Q;) of the product measures is immediately seen to reproduce exactly the measure
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J(A1, Ay)(D), so that we conclude that the entanglement density fungtida
indeed the constant unit function.

As expected, there can be classical correlations between the two observables
A, A; at the state D. In fact we have

AUD) = 3 wi(Yrs, Pirsdny + D wi(y, Py iy

and

Ax(D) = ) Wi(Yry, Qi ng + D Wi(Y—, Qivr)n_y,
i i
so that the product measure takes the form

D) 8 o0) = (w2 ) i 0100
+ <2Wi W P w))(iZwi (V- Q 1//-))?7(;,;)
+ (Zwi (W P m))(iZwi (-, O W))n(%,_%)
+ (Zwi (- P w_)><i2wi W+ Q m))n(_%,

Clearly this measure does not coincide, in general, d({th;, A,)(D) so that we
get a nontrivial density functiop.: the considered spin observablas, A, can
exhibit classical correlations &i.

To exemplify the above results, let us consider the particular case

N
e d

D=wWP,®P.+(1—-wW)P,® Py,

where P, is the the projector on the spin-up state along thez-axis while Py
is the projector on the eigenstate of theomponent of the spin corresponding to
the eigenvalue-3.

Noticing that ¢, Pxy.) = (Y_, Pxy_) = % we see, by inspection of the
previous formulas, that both the measud#\;, A;)(D) andw A(P, ® P,) X
Ax(Pr ® Py) + (1 —w)Ai(Px ® Py) X Ax(Py x Px) now take the form

143w 1-w 1—-w 1-w
eI Rt G Rl R (G L

leaving no room for entanglement.




982 Beltrametti and Bugajski

On the other hand the product measBs€D) X Ay(D) now reads
(L+w)? (1—w)? 1—w? 1—w?
L) Y R G ) Ry [CRr ) eyt [ CE )L
so that the classical correlation function becomeswe 1,

11\ 1+3w 1 1y 1
pC 21 2 - (1+W)2, )Oc 21 2 - 1—W,

11y 1 11y 1
Pe\272) T 1xw \722) T1xw

while forw = 1 both J(As, A2)(D) and A;(D) X A,(D) become concentrated at

the point{3, 1}.
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