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The frame of classical probability theory can be generalized by enlarging the usual
family of random variables in order to encompass nondeterministic ones. This leads to
a frame in which two kinds of correlations emerge: the classical correlation that is coded
in the mixed state of the physical system and a new correlation, to be called probabilis-
tic entanglement, which may occur also at pure states. We examine to what extent this
characterization of correlations can be applied to quantum mechanics. Explicit calcu-
lations on simple examples outline that a same quantum state can show only classical
correlations or only entanglement depending on its statistical content; situations may
also arise in which the two kinds of correlations compensate each other.
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1. INTRODUCTION

The standard framework of classical statistical mechanics makes use of a
convex set of states having the structure of a simplex, and adopts a family of
observables, or random variables, which have a deterministic nature. More specif-
ically, the states form the setM+1 (Ä) of the probability measures on a measurable
spaceÄwhose points—hence the Dirac measures onÄ to be denotedδω,ω ε Ä—
represent the pure states. An observable taking values in a measurable space4

corresponds to an affine map

A : M+1 (Ä)→ M+1 (4),

and the deterministic requirement is mirrored by the condition thatA has no
dispersion on pure states, namely Dirac measures are mapped into Dirac measures,
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so that the observableA becomes represented by a measurable functionÄ→ 4.
Any two observables have a unique joint observable and a correlation between
their outcomes can occur only at mixed states.

If the above framework is generalized by dropping out the deterministic re-
quirement, so allowing also observables that have dispersion on pure states, we
get a frame that has been discussed in Beltrametti and Bugajski (1995, 1996) and
Bugajski (1996, 2001): the set of states is still the simplexM+1 (Ä) but now the
observables need not map Dirac measures onÄ into Dirac measures on the pertain-
ing outcome space. Any two observables admit a joint observable but the latter is
nonunique when the two observables have an indeterministic nature: a correlation
between their outcomes is now relative to the considered joint observable and it
need not vanish at pure states. In Beltrametti and Bugajski (2002) it is shown that
we can separate two kinds of correlation: theclassical correlation, which occurs
only at a mixed state and is coded in the way the pure states are mixed up to get
the nonpure state in question, and theprobabilistic entanglementgenerated by the
joint observable considered, and occurring also in pure states. Both correlations
can be exhaustively characterized by corresponding density functions (correlation
functions). As the name suggests, the probabilistic entanglement is analogous to
the corresponding quantum concept.

In Section 2 we examine to what extent the notions of classical correlation
and of probabilistic entanglement can be transferred to the quantum context: we
will point at the fact the nonsimplex structure of the set of quantum states gives rise
to ambiguities in separating classical correlation and entanglement when mixed
states are considered. A quantum state can always be decomposed into a (possibly
trivial) convex combination of pure states, so that it admits a representation in
the setM+1 (ÄH) of the probability measures on the measurable spaceÄH of the
one-dimensional projectors of the Hilbert spaceH, but this representation is in
general nonunique. In fact, the observables adopted by quantum mechanics do not
separateM+1 (ÄH): they define a partition ofM+1 (ÄH) into equivalence classes
that correspond to the density operators ofH. Recalling that mixed quantum states
are associated with nontrivial density operators ofH and that pure states are
associated with one-dimensional projectors, it is indeed well known that the convex
decomposition of a density operator into one-dimensional projectors is nonunique.
In Section 3 we will discuss a simple example that emphasizes the ambiguities said
above.

The problem of defining the notion of entanglement and of classical correla-
tion at mixed quantum states, and the related issue of characterizing the states that
can (or cannot) exhibit entanglement, have received attention in the literature under
different perspectives: as actual guides to the vast literature could serve Horodecki
et al. (2001) and Keyl (2002); we also mention Henderson and Vedral (2001) and
the rigorous approach of Majewski (2002) where some ideas similar to ours were
formulated.
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Let us recall that a quantum observable taking values in the measurable
space4 can be represented by a POV-measureE : B(4)→ L(H), whereB(4)
is σ -Boolean algebra of subsets of4 andL(H) is the family of the positive op-
erators ofH (see, e.g., Buschet al., 1995, 1996). If4 is the set of the reals then
B(4) is typically the Boolean algebra of the Borel subsets; if4 is a finite set then
B(4) is typically the Boolean algebra of all subsets of4.

Writing S(H) for the convex set of the density operators ofH, an equivalent
representation of an observable taking values in4 is given by an affine mapA of
S(H) into the setM+1 (4) of all probability measures on4. For a given quantum
stateD ∈ S(H) the measureA(D) is the outcome measure that is the result of
a measurement of the observableA on the stateD. We write EA to denote the
POV-measure associated toA and recall that the probability of getting a value of
the observableA in the setX ∈ B(4) at the stateD is given by the basic quantum
rule

A(D)(X) = Tr(EA(X)D). (1)

If the POV-measureEA reduces to a PV-measure on the real line, then the observ-
ableA is known to correspond to a self-adjoint operator ofH.

Notice that when4has the form of a Cartesian product41×42 an observable
A : S(H)→ M+1 (41×42) defines two observables,Ai : S(H)→ M+1 (4i ), i =
1, 2, byAi (D) :

∏
i (A(D)) where

∏
i : M+1 (41×42)→ M+1 (4i ) is the marginal

projection. The observableA is then said to be a quantum joint observable ofA1

and A2. However, for a pair of observablesAi : S(H)→ M+1 (4i ), i = 1, 2, the
existence of a quantum joint observable is not ensured.

2. CORRELATIONS

In probability theory a correlation between two parameter sets41 and42 is
understood as a particular property of a probability measureν on41×42, namely

ν 6= ν1 £ ν2,

whereνi =
∏

i ν, i = 1, 2, is the marginal measure on4i , and £ stands for the
product of measures. Thus, the notion of correlation just corresponds to the lack
of independence (to a “mutual relationship,” according to the Oxford Advanced
Learner’s Dictionary).

Consequently, we can say that a correlation between41 and42 encoded
in ν ∈ M+1 (41×42) is what distinguishesν from ν1 £ ν2. If we want to find a
formal characterization of such a correlation we have to find how to describe the
“difference” betweenν andν1 £ ν2. An exhaustive description of this “difference”
is provided by the density function (the Radon–Nikodym derivative, see e.g., Bauer,
1981; Billingsley, 1979) ofν w.r.t. ν1 £ ν2. Consequently, everything one can say
about a correlation between41 and42 encoded inν ∈ M+1 (41×42) is contained
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in the density function

ρ := dν

d(ν1 £ ν2)
,

which is a real-valued positive function on41×42. The existence of this density
function is ensured wheneverν is a discrete measure (Beltrametti and Bugajski,
2002). If in particular41 and42 and finite sets, the relationship betweenν and
ν1 £ ν2 will take the form

ν(X) =
∑

(ξ1,ξ2)∈X

ρ · ν £ ν2(ξ1, ξ2), ξ1 ∈ 41, ξ2 ∈ 42

for every X ⊆ 41×42. In this caseρ can be simply calculated by pointwise
dividing the two measuresν andν1 £ ν2:

ρ(ξ1ξ2) = ν(ξ1, ξ2)

ν1 £ ν2(ξ1, ξ2)
. (2)

The presence of a correlation is mirrored by the fact thatρ is not the constant unit
function.

We will be interested in the case in which the two correlated sets41 and42

are value sets (sets of outcomes) of two observables, while the probability measure
ν on41×42 is the result of the measurement of a joint observable of them.

In the standard context of the classical statistical mechanics, where the set of
states is the simplexM+1 (Ä) and only deterministic observables come into play,
any two observablesA1 : M+1 (Ä)→ M+1 (41), A2 : M+1 (Ä)→ M+1 (42) always
admit the unique joint observableA1 £ A2 defined by its action on the pure states

A1 £ A2(δω) := A1(δω) £ A2(δω) for everyω ∈ Ä, (3)

and extended by affinity to the wholeM+1 (Ä). Thus, when we speak of a correlation
betweenA1 and A2 at a stateµ ∈ M+1 (Ä) the reference to the joint observable
A1 £ A2 is compulsory, and we have just to compare the two measuresA1 £ A2(µ)
and A1(µ) £ A2(µ). What we get is the classical correlation characterized by the
density function (the Radon–Nicodym derivative)

ρc := d(A1 £ A2(µ))

d(A1(µ) £ A2(µ))
. (4)

In view of Eq. (3)ρc = 1 at pure states: a nontrivial classical correlation can appear
only at mixed states.

If we go to the generalization of the standard classical frame by allowing also
indeterministic observables, then the unicity of the joint observable breaks down:
besidesA1 £ A2 other joint observables become possible (see Beltrametti and
Bugajski, 1996, 2002; Bugajski, 1996). When we speak of a correlation between
A1 and A2 at a stateµ ∈ M+1 (Ä) we have now to specify which joint observable
J(A1, A2) we refer to and we are naturally led to compare the two measures
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J(A1, A2)(µ) and A1(µ) £ A2(µ), thus getting the correlation characterized by
the density function

ρt := d(J(A1, A2)(µ))

d(A1(µ) £ A2(µ))
. (5)

As discussed in Beltrametti and Bugajski (2002) this correlation can be, in gen-
eral, partitioned into two parts by first comparing the measureJ(A1, A2)(µ) with
A1 £ A2(µ) and then comparing the measureA1 £ A2(µ) with A1(µ) £ A2(µ).
The second step provides just the classical correlation said above, while the first
step provides a correlation to be calledentanglement. Clearly, the entanglement can
emerge only when the joint observable referred to differs fromA1 £ A2, namely
from the classical joint observable. The density function associated to the entan-
glement will then be

ρe := d(J(A1, A2)(µ))

d(A1 £ A2(µ))
, (6)

and known properties of the Radon–Nicodym derivatives (see, e.g., Bauer, 1981
Corollary 2.9.4, or Billingsley, 1979, Sect. 32) give the product rule

ρt = ρc · ρe. (7)

This motivates forρt the name of total correlation (hence the notation).
Let us now come to the quantum frame, and consider two quantum observables

Ai : S(H)→ M+1 (4i ), i = 1, 2, admitting a joint observable: this is the case, for
instance, when one deals with real valued observables represented by commuting
self-adjoint operators (the joint observable is then unique). We can say that the
two observables are correlated at the quantum stateD ∈ S(H), relative to the given
quantum joint observableJ(A1, A2) : S(H)→ M+1 (41×42) iff

J(A1, A2)(D) 6= A1(D) £ A2(D).

The total correlation between the quantum observablesA1 andA2 relative to
the joint observableA (at the stateD) is then exhaustively described, as in Eq. (5),
by the total correlation function

ρt = d(J(A1, A2)(D))

d(A1(D) £ A2(D))
. (8)

But if we tackle the problem of separating the classical correlation and the entan-
glement then we are faced with the translation to the quantum frame of the product
A1 £ A2. We can mirror Eq. (3) by definingA1 £ A2 on the pure states according to

A1 £ A2(P) := A1(P) £ A2(P) (9)

for every one-dimensional projectorP of H. But the extension by affinity to the
whole set of quantum statesS(H) makes sense only if we refer to a specific convex
decomposition into pure states of the mixed stateD, and this decomposition is
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known to be nonunique. In other words, if the mixed state (density operator)D
under discussion admits the convex decomposition into pure states

D =
∑

i

wi Pi , (10)

where thewi ’s are positive numbers whose sum is 1 and thePi ’s are one-
dimensional projectors, then we can affinely defineA1 £ A2 on the r.h.s. of Eq. (10)
getting the measure∑

i

wi A1 £ A2(Pi ) =
∑

i

wi A1(Pi ) £ A2(Pi ), (11)

but this measure is not invariant under different choices of the convex
decomposition ofD.

In view of the above fact one can speak of classical correlation and of entangle-
ment in the quantum context only with reference to a given convex decomposition
of the (mixed) state under discussion. The corresponding density functions will
read (see Eqs. (4) and (6))

ρc := d
(∑

i wi A1(Pi ) £ A2(Pi )
)

d(A1(D) £ A2(D))
(12)

and

ρe := d(J(A1A2)(D))

d
(∑

i wi A1(Pi ) £ A2(Pi )
) . (13)

Let us stress that only the productρc · ρe that equalsρt (see Eq. (7)) has the property
of being invariant under different convex decompositions of the quantum stateD,
while neitherρc norρe have such an invariance.

3. A TWO-QUBIT EXAMPLE

We will illustrate the introduced concepts on a simple quantum-mechanical
example based on a Hilbert space of the formH = C2 ⊗ C2: it can be viewed as
the composition of two spin-1/2 or as a two-qubit system.

Let {ψ+, ψ−} be an orthonormal basis of C2 and let P+, P− be the corre-
sponding (one-dimensional) projectors. A canonical orthonormal basis of C2 ⊗
C2 is provided by{ψ+ ⊗ ψ+, ψ− ⊗ ψ−, ψ+ ⊗ ψ−, ψ− ⊗ ψ+} and the associated
one-dimensional projectors read:

P++ = P+ ⊗ P+, P−− = P− ⊗ P−, P+− = P+ ⊗ P−, P−+ = P− ⊗ P+.

Consider the two observablesAi : S(C2⊗ C2)→ M+1 ({ 12,− 1
2}), i = 1, 2,

described by the self-adjoint operators on C2⊗ C2:



P1: GXB

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468229 August 19, 2003 21:32 Style file version May 30th, 2002

Entanglement and Classical Correlations in the Quantum Frame 975

Â1

(
1

2
P+ − 1

2
P−

)
⊗ I , Â2 = I ⊗

(
1

2
P+ − 1

2
P−

)
,

where I denotes the identity operator inC2. We can viewAi as the observable
describing thez-component of the spin of thei th subsystem. According to quan-
tum mechanics the only admissible joint observable ofA1, A2 is the observ-
able J(A1, A2) : S(C2⊗ C2)→ M+1 ({ 12,− 1

2} × { 12,− 1
2}) which corresponds to

the PV measureEJ(A1, A2) defined by

EJ(A1, A2)

(
1

2
,

1

2

)
= P++, EJ(A1, A2)

(
−1

2
,−1

2

)
= P−−,

EJ(A1, A2)

(
1

2
,−1

2

)
= P+−, EJ(A1, A2)

(
−1

2
,

1

2

)
= P−+.

We will be concerned with the correlation betweenA1 andA2 relative to the
joint observableJ(A1, A2) at various quantum states: this will point at the fact
that, in the quantum frame, the splitting of the correlation into a classical part and
an entanglement might become a matter of convention.

In the sequel we will have to compute the various measures involved in the cor-
relations of interest: to do that we will refer to Eq. (1), noticing that the trace is linear
and that for a pure state, sayP, the r.h.s. of Eq. (1) takes the form (φ, EA(X)φ),
whereφ is any unit vector in the one-dimensional subspace onto whichP projects.
We will write η 1

2
to denote the Dirac measure on{ 12,− 1

2} concentrated at the value
1
2 (similarly forη− 1

2
), andη( 1

2 , 1
2 ) to denote the Dirac measure on{ 12,− 1

2} × { 12,− 1
2}

concentrated at the point (1
2, 1

2) (similarly for η( 1
2 ,− 1

2 ), η(− 1
2 , 1

2 ), η(− 1
2 ,− 1

2 ).

3.1. Separable Mixed State

A separable mixed stateis represented by a density operator that decom-
poses into the convex combination of pure product states. A canonical example is
provided by the density operator

D = w1P++ + w2P−− + w3P+− + w4P−+. (14)

In order to get the total correlation we have now to compare the two measures
J(A1, A2)(D) andA1(D) £ A2(D).

The measureJ(A1, A2)(D) on { 12,− 1
2} × { 12,− 1

2} is easily obtained looking
at the explicit expression ofEJ(A1, A2) given above. We get

J(A1, A2)(D) = w1η( 1
2 , 1

2 ) + w2η(− 1
2 ,− 1

2 ) + w3η( 1
2 ,− 1

2 ) + w4η(− 1
2 , 1

2 ).

The measureA1(D) on { 12,− 1
2} can be obtained by an analogous procedure:

noticing thatEA1( 1
2) = P+ ⊗ I andEA1(− 1

2) = P− ⊗ I we get,

A1(D) = (w1+ w3)η 1
2
+ (w2+ w4)η− 1

2
.
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Similarly we have

A2(D) = (w1+ w4)η 1
2
+ (w2+ w3)η− 1

2
.

Hence the product measure,A1(D) £ A2(D) takes the form

A1(D) £ A2(D) = (w1+ w3)(w1+ w4)η( 1
2 , 1

2 ) + (w2+ w4)(w2+ w3)η(− 1
2 ,− 1

2 )

+ (w1+ w3)(w2+ w3)η( 1
2 ,− 1

2 ) + (w2+ w4)(w1+ w4)η(− 1
2 , 1

2 ).

The density function of the total correlation betweenA1 and A2 at the state
D will then turn out to be (see Eqs. (2) and (8)):

ρt

(
1

2
,

1

2

)
= w1

(w1+ w3)(w1+ w4)
, ρt

(
−1

2
,−1

2

)
= w2

(w2+ w4)(w2+ w3)
,

ρt

(
1

2
,−1

2

)
= w3

(w1+ w3)(w2+ w3)
, ρt

(
−1

2
,

1

2

)
= w4

(w2+ w4)(w1+ w4)
.

In order to examine how this total correlation splits into classical correlation
and entanglement we have now to evaluate the measure (see Eqs. (9) and (11))

w1A1 £ A2(P++)+ w2A1 £ A2(P−−)+ w3A1 £ A2(P+−)+ w4A1 £ A2(P−+),

whereA1 £ A2(P++) = A1(P++) £ A2(P++) and so on. The calculation goes as
before: for instance we haveA1(P++) = A2(P++) = η 1

2
so that A1(P++) £

A2(P++) = η( 1
2 , 1

2 ), and similarly for the other terms. The result is that the measure
above equals exactly the measureJ(A1, A2)(D) said before. This means that the
density functionρc of the classical correlation coincides withρt (see Eq. (12))
while the density functionρe (see Eq. (13)) is the constant unit function. In other
words, the total correlation betweenA1 and A2 at the stateD appears to be en-
tirely a classical correlation, without any entanglement coming into play. In the
Appendix we will prove that the absence of entanglement holds true also for every
bipartite separable mixed state.

3.2. Bell Diagonal State

Instead of the canonical basis{ψ+ ⊗ ψ+, ψ− ⊗ ψ−, ψ+ ⊗ ψ−, ψ− ⊗ ψ+}
used before, let us now turn to the Bell basis

81 : = 1√
2

(ψ+ ⊗ ψ+ + ψ− ⊗ ψ−), 82 := 1√
2

(ψ+ ⊗ ψ+ − ψ− ⊗ ψ−),

83 : = 1√
2

(ψ+ ⊗ ψ− + ψ− ⊗ ψ+), 84 := 1√
2

(ψ+ ⊗ ψ− − ψ− ⊗ ψ+),

and letP1, P2, P3, P4 be the corresponding one-dimensional projectors.
A convex combination of the form

D′ = w′1P1+ w′2P2+ w′3P3+ w′4P4 (15)
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is called aBell diagonal state(Bennetet al., 1996). We are going to obtain the
correlation functions for the observablesA1, A2 at such a state.

The outcome measureJ(A1, A2)(D′) of the quantum joint observable ofA1

andA2 is easily found to be

J(A1, A2)(D′) = 1

2
(w′1+ w′2)

(
η( 1

2 , 1
2 ) + η(− 1

2 ,− 1
2 )

)
+ 1

2
(w′3+ w′4)

(
η( 1

2 ,− 1
2 ) + η(− 1

2 , 1
2 )

)
.

The two measuresA1(D′) andA2(D′) have the uniform structure12η 1
2
+ 1

2η− 1
2

so

that also their product is uniformly distributed over the four-point space{ 12,− 1
2} ×

{ 12,− 1
2}:

A1(D′) £ A2(D′) = 1

4

(
η( 1

2 , 1
2 ) + η(− 1

2 ,− 1
2 ) + η( 1

2 ,− 1
2 ) + η(− 1

2 , 1
2 )

)
.

Therefore, the density function of the total correlation betweenA1 andA2 at
the Bell stateD′ is

ρ ′t

(
1

2
,

1

2

)
= ρ ′t

(
−1

2
,−1

2

)
= 2(w′1+ w′2),

ρ ′t

(
1

2
,−1

2

)
= ρ ′t

(
−1

2
,

1

2

)
= 2(w′3+ w′4).

In order to see how this total correlation could be separated into classical
correlation and entanglement we must go to the measure (see Eq. (11))

w′1A1 £ A2(P1)+ w′2A1 £ A2(P2)+ w′3A1 £ A2(P3)+ w′4A1 £ A2(P4),

which is easily seen to coincide with the uniform product measureA1(D′) £
A2(D′). Therefore, by inspection of Eqs. (12) and (13), we conclude thatρ ′e = ρ ′t
while ρ ′c is the constant unit function. In other words, the correlation betweenA1

and A2 at the Bell stateD′ appears to be entirely an entanglement without any
classical correlation coming into play.

The absence of any classical correlation that we have found seems to disagree
with the result of Henderson and Vedral (2001), where a numerical measure for
classical correlation is introduced, which does not vanish at some Bell diagonal
state. This might point at the fact that such a numerical measure does not fully
capture our notion of classical correlation.

A somewhat similar disagreement with previous literature occurs also when
we look at the entanglement density functionρ ′e(= ρ ′t ) given above which is
nonconstant wheneverw′1+ w′2 6= w′3+ w′4. Indeed, according to Bennetet al.
(1996) and Keyl (2002) a Bell diagonal state shows entanglement only if one of
the weightsw′1, w′2, w′3, w′4 (in our notations) is bigger than12: clearly, this would
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imply the inequalityw′1+ w′2 6= w′3+ w′4 but the reverse implication does not
hold. Again, this might point at the fact that the numerical measure of entangle-
ment introduced in Bennetet al. (1996) (the “entanglement of formation”) does
not cover exactly our definition of entanglement.

3.3. A Degenerate State

As far as the density operatorsD andD′ considered in Sections 3.1 and 3.2
have no degenerate eigenvalues, that is as far as thewi ’s and thewi ’s in Eqs. (14)
and (15) are pairwise distinct, it is guaranteed thatD and D′ represent distinct
quantum states. In this case the fact that the correlation betweenA1 andA2 at the
stateD is purely classical while at the stateD′ it is just entanglement makes no
problem. But a peculiar feature emerges when we consider degenerate eigenvalues,
for instance when we assume

w1 = w2 = w′1 = w′2 = a and w3 = w4 = w′3 = w′4 = b

with a+ b = 1
2. In this caseD andD′ actually represent the same quantum state,

sayDd, since the only difference among their convex decompositions is a different
choice of an orthonormal basis within the degenerate eigenspaces.

As expected we have nowρt = ρ ′t explicitly:

ρt

(
1

2
,

1

2

)
= ρ ′t

(
1

2
,

1

2

)
= ρt

(
−1

2
,−1

2

)
= ρ ′t

(
−1

2
,−1

2

)
= 4a,

ρt

(
1

2
,−1

2

)
= ρ ′t

(
1

2
,−1

2

)
= ρt

(
−1

2
,

1

2

)
= ρ ′t

(
−1

2
,

1

2

)
= 4b.

But, according to the results of Sections 3.1 and 3.2, we have now that this
correlation appears to be entirely a classical correlation if we refer to the convex
combination

aP++ + aP−− + bP+− + bP−+ (16)

while it appears to be entirely an entanglement if we refer to the convex combination

aP1+ aP2+ bP3+ bP4 (17)

despite the fact that these two convex combinations correspond to the same
quantum state.

This result emphasizes the fact that the separation of entanglement and clas-
sical correlation is possible only if we know thestatistical contentof the quantum
mixed state, i.e., the actual decomposition of the mixed state into a convex combi-
nation of pure states, but thisstatistical contentis in general not uniquely specified
by the von Neumann description of quantum mixed states.
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Let us further remark that also the convex combination

aP++ + aP−− + bP3+ bP4 (18)

represents the same quantum stateDd expressed by Eq. (16) or by Eq. (17). Clearly,
the total corelation betweenA1 andA2 at this new convex combination is the same
as before, but now the density functions of the classical correlation and of the
entanglement turn out to be

ρc

(
1

2
,

1

2

)
= ρc

(
−1

2
,−1

2

)
= 2(2a+ b), ρc

(
1

2
,−1

2

)
= ρc

(
−1

2
,

1

2

)
= 2b,

and

ρe

(
1

2
,

1

2

)
= ρe

(
−1

2
,−1

2

)
= 2a

2a+ b
, ρe

(
1

2
,−1

2

)
= ρe

(
−1

2
,

1

2

)
= 2.

Thus, if one refers to the convex decomposition of Eq. (18), the total correlation
appears to be partially a classical correlation and partially an entanglement.

In the totally degenerate casea = b(= 1
4), hence in the case of the “most

mixed” state, the density function of the total correlation is, as expected, the con-
stant unit function, no matter which convex decomposition one refers to. But, if
the convex decomposition of Eq. (18) is referred to, there is still some classical
correlation and some entanglement: indeed we find

ρc

(
1

2
,

1

2

)
= ρc

(
−1

2
,−1

2

)
= 3

2
, ρc

(
1

2
,−1

2

)
= ρc

(
−1

2
,

1

2

)
= 1

2
,

while

ρe

(
1

2
,

1

2

)
= ρe

(
−1

2
,−1

2

)
= 2

3
, ρe

(
1

2
,−1

2

)
= ρe

(
−1

2
,

1

2

)
= 2,

in agreement with the product ruleρc · ρe = ρt . A classical correlation and an
entanglement survive at the mixture of Eq. (18) even ifa = b, though in absence
of a total correlation. This example shows a new and unexpected effect: even if
a state shows no total correlation at all, one can find both classical and quantum
correlations that compensate each other.

APPENDIX

We refer to the two-qubit example of Section 3, and consider the observ-
ablesA1, A2 there defined representing thez-component of the spin of the two
subsystems. AgainJ(A1, A2) denotes their joint observable andEJ(A1, A2) is the
corresponding PV measure. We are going to show that there is no entanglement be-
tweenA1 andA2 at any bipartite separable mixed state represented by the density
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operator

D =
∑

i

wiPi ⊗Qi ,

wherePi andQi are one-dimensional projectors ofC2, with i ranging over the
positive integers (actually what we are going to show easily generalizes to integrals
of product pure states with respect to arbitrary probability measures over pure states
of the two-qubit system).

In order to calculate the entanglement function we have to compare the two
measuresJ(A1, A2)(D) and

∑
i wi A1(Pi ⊗Qi ) £ A2(Pi ⊗Qi ).

Looking at the explicit expression ofEJ(A1, A2) given in Section 3, and recalling
thatψ+, ψ− denote the orthonormal vectors ofC2 representing the spin-up and
spin-down states along thez-axis, we obtain forJ(A1, A2)(D) the explicit form∑

i

wi (ψ+, Piψ+)(ψ+,Qiψ+)η( 1
2 , 1

2 )

+
∑

i

wi (ψ−, Piψ−)(ψ−,Qiψ−)η(− 1
2 ,− 1

2 )

+
∑

i

wi (ψ+, Piψ+)(ψ−,Qiψ−)η( 1
2 ,− 1

2 )

+
∑

i

wi (ψ−, Piψ−)(ψ+,Qiψ+)η(− 1
2 , 1

2 )

In fact, looking for instance at the first term of the above expression, we have
just to refer to Eq. (1) and recall that at the point{ 12, 1

2} the PV measureEJ(A1, A2)

takes the valueP++, i.e., the projector onto the stateψ+ ⊗ ψ+, so that the value
of J(A1, A2)(D) at that point becomes∑

i

wi Tr(P++ · Pi ⊗Qi ) =
∑

i

wi (ψ+ ⊗ ψ+, Pi ⊗Qiψ+ ⊗ ψ+)

(with similar remarks applying for the other terms).
On the other hand we have

A1(Pi ⊗Qi ) = (ψ+, Piψ+)η 1
2
+ (ψ−, Piψ−)η− 1

2

and

A2(Pi ⊗Qi ) = (ψ+,Qiψ+)η 1
2
+ (ψ−,Qiψ−)η− 1

2

as one sees by noticing, for instance, that at the point{ 12} the PV measureEA1

takes the valueP+ ⊗ I (see Section 3), so that at this point the value ofA1(Pi ⊗
Qi ) becomes (see Eq. (1)) Tr(P+ ⊗ I · Pi ⊗Qi ) = Tr(P+Pi ) = (ψ+, Piψ+); and
similarly for the other terms. Hence the mixture

∑
i wi A1(Pi ⊗Qi ) £ A2(Pi ⊗

Qi ) of the product measures is immediately seen to reproduce exactly the measure
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J(A1, A2)(D), so that we conclude that the entanglement density functionρe is
indeed the constant unit function.

As expected, there can be classical correlations between the two observables
A1, A2 at the state D. In fact we have

A1(D) =
∑

i

wi (ψ+, Piψ+)η 1
2
+
∑

i

wi (ψ−, Piψ−)η− 1
2

and

A2(D) =
∑

i

wi (ψ+,Qiψ+)η 1
2
+
∑

i

wi (ψ−,Qiψ−)η− 1
2
,

so that the product measure takes the form

A1(D) £ A2(D) =
(∑

wi (ψ+, Piψ+)

)(∑
i

wi (ψ+,Qiψ+)

)
η( 1

2 , 1
2 )

+
(∑

wi (ψ−, Piψ−)

)(∑
i

wi (ψ−,Qiψ−)

)
η(− 1

2 ,− 1
2 )

+
(∑

wi (ψ+, Piψ+)

)(∑
i

wi (ψ−,Qiψ−)

)
η( 1

2 ,− 1
2 )

+
(∑

wi (ψ−, Piψ−)

)(∑
i

wi (ψ+,Qiψ+)

)
η(− 1

2 , 1
2 ).

Clearly this measure does not coincide, in general, withJ(A1, A2)(D) so that we
get a nontrivial density functionρc: the considered spin observablesA1, A2 can
exhibit classical correlations atD.

To exemplify the above results, let us consider the particular case

D = w P+ ⊗ P+ + (1− w)Px ⊗ Px,

whereP+ is the the projector on the spin-up stateψ+ along thez-axis while Px

is the projector on the eigenstate of thex-component of the spin corresponding to
the eigenvalue+ 1

2.
Noticing that (ψ+, Pxψ+) = (ψ−, Pxψ−) = 1

2 we see, by inspection of the
previous formulas, that both the measuresJ(A1, A2)(D) andw A1(P+ ⊗ P+) £
A2(P+ ⊗ P+)+ (1− w)A1(Px ⊗ Px) £ A2(Px × Px) now take the form

1+ 3w

4
η( 1

2 , 1
2 ) +

1− w

4
η(− 1

2 ,− 1
2 ) +

1− w

4
η( 1

2 ,− 1
2 ) +

1− w

4
η(− 1

2 , 1
2 ),

leaving no room for entanglement.
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On the other hand the product measureA1(D) £ A2(D) now reads

(1+ w)2

4
η( 1

2 , 1
2 ) +

(1− w)2

4
η(− 1

2 ,− 1
2 ) +

1− w2

4
η( 1

2 ,− 1
2 ) +

1− w2

4
η(− 1

2 , 1
2 ),

so that the classical correlation function becomes, forw 6= 1,

ρc

(
1

2
,

1

2

)
= 1+ 3w

(1+ w)2
, ρc

(
−1

2
,−1

2

)
= 1

1− w
,

ρc

(
1

2
,−1

2

)
= 1

1+ w
, ρc

(
−1

2
,

1

2

)
= 1

1+ w
,

while for w = 1 bothJ(A1, A2)(D) andA1(D) £ A2(D) become concentrated at
the point{ 12, 1

2}.
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